E. Gioan ${ }^{1,2,3}$, K. Sol ${ }^{1,2}$, G. Subsol ${ }^{1,2,3}$

Thanks to Yann Heuzé and Joan Richtsmeier (Dept of Anthropology, PennState, USA) for access to data and expertise.

- 3D CT images of children (0.1-19.9 months):
- 40 with coronal craniosynostosis (i.e. premature fusion of cranial sutures)
- 20 unaffected
- Evaluation and classification into 3 diagnosis categories by a clinician:
- BCS (bicoronal): fusion of both lateral sutures (15)
- LUCS (left unicoronal): fusion of only left-side suture (8)
- RUCS (right unicoronal): fusion of only right-side suture (17)
- 133 3D landmarks defined by an expert:
- 41 anatomical landmarks
- 92 curve semi-landmarks

Combinatorial Encoding

We call basis an ordered 4-uple of 3D landmarks ABCD. Each basis is associated with a sign depending on the orientation of the tetrahedron ABCD (we assume that landmarks are in general position).

For a model \boldsymbol{M} of \boldsymbol{n} landmarks, we can define a set \mathcal{B} of $\binom{\mathbf{n}}{\mathbf{4}}$ different bases b. The list of their signs forms a vector χ_{M}, with $\chi_{M}(b) \in\{-1,1\}$, called chirotope of \boldsymbol{M}, which encodes the "shape" of the model.

The properties of $\chi_{\mathbf{M}}$ are known as the oriented matroid theory. They are only based on the relative positions of landmarks of M and not on any numerical measures as distances or angles.

- Automatic Classification

For a set \mathcal{M} of models \boldsymbol{M} and a subset C of \mathcal{M}, we define the mean m_{C} :

$$
m_{C}(b)=\left(\sum_{M \in C} \chi_{M}(b)\right) /|C|
$$

For any subset S of \mathscr{B}, we define a combinatorial distance between \mathbf{M} and \mathbf{N}, as a usual distance between their chirotopes:

$$
d_{S}\left(\chi_{\mathrm{M}}, \chi_{\mathrm{N}}\right)=\Sigma_{b \in S}\left|\chi_{\mathrm{M}}(b)-\chi_{\mathrm{N}}(b)\right| / 2
$$

We can classify \mathcal{M} into clusters of models by using this combinatorial distance and, for instance, the K-means criterion/algorithm.

- Characterization of Classes

To characterize a class C, we look for a subset S of \mathscr{B}, the smallest possible, a radius l, and a center x such that C is contained in

$$
B(S, x, l)=\left\{\boldsymbol{M} \in \mathcal{M} \mid d_{S}\left(\chi_{\mathbf{M}}, x\right) \leq l\right\}
$$

and this "ball" separates C from $\mathscr{M} \backslash C$.
We sort the bases w.r.t. the value of the discriminability, defined as:

$$
\tau(b, C, \mathcal{M} \backslash C)=\left|m_{C}(b)-m_{\mathcal{M} \backslash C}(b)\right| / 2
$$

The closer to 1 the discriminability is, the more significant the basis b is to characterize the class C. We look for the bases of S among those of \mathcal{B} with the highest discriminability.

Research supported by the OMSMO project (LIRMM), the TEOMATRO grant ANR-10-BLAN-0207, and the French-South African INLOO project (CNRS).

Application to Craniosynostosis

Automatic Classification

\rightarrow K-means automatic classification into 4 clusters using the combinatorial distance matches the 4 diagnosis categories.

- Some Characterizations of Classes
(using only the 41 anatomical landmarks)

$\left[\chi\left(b_{1}\right)=+1\right] \Leftrightarrow$ RUCS

$\left[\chi\left(b_{2}\right)=+1\right] \Leftrightarrow$ LUCS
$>$ RUCS and LUCS are characterized by the sign of only 1 basis.
\rightarrow The 2 basis b_{1} and b_{2} are symmetric w.r.t. the median sagittal plan.

[$\chi\left(b_{3}\right)=-1$] and
$\left[\chi\left(b_{4}\right)=-1\right.$]
\Leftrightarrow
BCS

> The signs of 2 bases characterize the category BCS.
$>$ Based on the discriminability, we found a subset S of 5 bases and a vector x in $\{-1,1\}^{B}$ such as: \boldsymbol{M} is unaffected if and only if $\boldsymbol{M} \in B(S, x, 2)$ (i.e. the signs of at least 3 of these 5 bases are the same in x and χ_{m}).

